Главная              Рефераты - Производство

Расчет и проектирование ректификационной колонны насадочного типа - курсовая работа

Министерство Высшего и среднего специального образования Российской Федерации

Нижегородский Государственный Технический Университет

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине

“ПРОЦЕССЫ И АППАРАТЫ”

Тема : РАСЧЁТ И ПРОЕКТИРОВАНИЕ РЕКТИФИКАЦИОННОЙ КОЛОННЫ НАСАДОЧНОГО ТИПА

Задание №8

Руководитель

Епифанова В. С.

Студент

Декабрьский В.В.

Нижний Новгород

2008 г.


СОДЕРЖАНИЕ

Задание

1. Материальный баланс

2. Определение скорости пара и диаметра колонны

3. Расчёт высоты насадки

4. Расчёт гидравлического сопротивления насадки


Задание:

Рассчитать и спроектировать колонну ректификации для разделения смеси этанол-вода, поступающей в количестве 10 тонн в час. Состав исходной смеси 40 % массовых этанола и 60 %массовых воды, кубовый остатоксодержит 1 % массовых этанола, дистиллят- 94 %. Ректификация производится при атмосферном давлении. Нагрев производится водяным паром р = 3 атм. Тип колонны- насадочная.


I. Материальный баланс

Обозначим массовый расход дистиллята через GP кг/ч, кубового остатка через GW кг/ч.

Из уравнений материального баланса ректификационной колонны непрерывного действия

F = P + W ; F xF = P xP + W xW, находим

P + W= 10000 кг/ч

Pх 0,94 + W * 0,01 = 10000 х 0,4

W = 5806,44 кг/ч

P= 4193,56

Для дальнейших расчётов выразим концентрации питания, дистиллята и кубового остатка в мольных долях.

Питание:

ХF = _ х F / Мэ____ = 40/46,07 = 0,868 = 0,148

х F + 100 - х F 40 + 90 0,868 +5

Mэ M в 46,07 18

Дистиллят:

xP = xP / Мэ = 94/46,07 = 2,04 = 0,86

х P + 100 – х P 94 + 90 2,04+0,333

Mэ М в 46,07 18

Кубовый остаток:

xW = х W э = 1/46,07 = 0,022 = 0,004

х W + 100 – х W 1 + 99 0,022+5,5

Мэ Мв 46,07 18

Относительный мольный расход питания:

F = xP - xW = 0,86 – 0,004 = 0,856 =5,944

xF - xW 0,148 – 0,004 0,144

Откуда находим

W =

P = F – W = 5.944-4.921 = 1.023

Определяем минимальное число флегмы по уравнению:

Rмин = xP - y * F =0,86 - 0,33 = 2,912

y*F - xF 0,33 - 0,148

где y*F = 0,33 – мольную долю бензола в паре, равновесном с жидкостью питания, определяем по диаграмме y* - x. (рис.1)

Определяем число флегмы по уравнению:

R= 1,3 Rмин + 0,3 = 1,3 х 2,912 + 0,3 =4,086

Уравнение рабочих линий:

а) верхней (укрепляющей части колонны)

y =

y = 0.803x + 0.169

б) нижней (исчерпывающей) части колонны:

y =

y = 1,972x – 0,004

II . Расчёт скорости пара и диаметра колонны

Средние концентрации жидкости:

а) в верхней части колонны

x' ср = ( xF + xD ) / 2 = (0,148 + 0,86) / 2 = 0,504

б) в нижней части колонны

x’’ср = (xF + xW ) / 2 = (0,148+0,004) / 2 = 0,076

Средние концентрации пара находим по уравнению рабочих линий:

а) в верхней части колонны

y’ср = 0,803 x’ср + 0,169 = 0,803 x 0,504 + 0,169 = 0,574

б) в нижней части колонны

y’’ср = 1,972 x’’ср - 0,004 = 1,972 х 0,076 – 0,004 = 0,146

Средние температуры пара определяем по диаграмме t – x,y

а) при y’ср = 0,574 t’ ср = 88 o С

б) при y’’ср = 0,146 t’’ср = 97 o С

Средние мольные массы и плотности пара:

а) М’ср = y’ср х Мэ + (1- y’ср ) Мв = 0,574 х 46,07 + 0,426 х 18 = 32,55 кг/кмоль

’ср = M ср х T о = 32,55 х 273 = 1,1 кг/м3

22,4 х T’ср 22,4 х 361

б) М’’ср = y’’ср х Мэ + (1- y’’ср ) Мв = 0,146 х 46,07 + 0,854 х 18 = 22,1 кг/кмоль

’’ср = М’’ср х T о = 22,1 х 273 = 0,73 кг/м3

22,4 х T’’ср 22,4 х 370


Средняя плотность пара в колонне:

п (’ср +’’ср ) / 2 = (1,1 + 0,73) / 2 = 0,915 кг/м3

Средние мольные массы жидкости:

а) М’ср = x’ср х Мэ + (1- x’ср ) Мв = 0,504 х 46,07 + 0,496 х 18 = 32,15 кг/кмоль

б) М’’ср = x’’ср х Мэ + (1- x’’ср ) Мв = 0,076 х 46,07 + 0,924 х 18 = 20,13 кг/кмоль

Температура в верху колонны при yP = 0,86 равняется 83 o С, а в кубе-испарителе при хW = 0,004 она равна 99 o С

Плотность жидкого этанола при 83o С э = 732 кг/м3 , а воды в = 959 кг/м3 при 99 o С .

Принимаем среднюю плотность жидкости в колонне

ж = (732 + 959) / 2 = 845,5 кг/м3 .

Средние массовые расходы (нагрузки) по жидкости:

MP = 46.07*0.86+18(1-0.86) = 42.14

MF = 46.07*0.148+18(1-0.148) = 22.15

Средние массовые потоки пара:

кг/с

кг/с

Выбор рабочей скорости паров обусловлен многими факторами и обычно осуществляется путем технико-экономического расчета для каждого конкретного процесса. Для ректификационных колонн, работающих в пленочном режиме при атмосферном давлении, рабочую скорость можно принимать на 20— 30 % ниже скорости захлебывания.

Предельную фиктивную скорость пара wп , при которой происходит захлебывание насадочных колонн, определяем по уравнению:

Вязкость жидких смесей mх находим по уравнению:

lgmх =xcp lgmэ +(1- xcp )lgmв

Тогда

lgmхВ =0,504lg 0,435+(1- 0,504)lg 0,357

lgmхН =0,076lg 0,326+(1- 0,076)lg 0,284

mхВ = 0,396 мПа*с

mхН = 0,287 мПа*с

Предельная скорость паров:

отсюда wПВ = 1,9 м/с

отсюда wПН = 1,57 м/с

Примем рабочую скорость wна 30 % ниже предельной:

w В = 1,9*0,7 = 1,33 м/с

w Н = 1,57*0,7 = 1,1 м/с

Диаметр ректификационной колонны определяют из уравнения расхода:

d =

Тогда диаметр верхней и нижней части колонны со­ответственно равен:

d В = = 1,87 м

d Н = = 3,48 м

Выберем стандартный диаметр обечайки d = 3,5 м, одинаковый для обеих частей колонны. При этом действительные рабочие скорости паров в колонне будут равны:

w В = 1,33(1,87/3,5)2 = 0,38 м/с

w Н = 1,1(3,48/3,5)2 = 1,087 м/с

III . Расчёт высоты насадки

Высоту насадки Н рассчитывают по модифицированному уравнению массопередачи:

Н = noy hoy

noy - общее число единиц переноса по правой фазе

hoy - общая высота единицы переноса

noy =

Этот интеграл определяют обычно методом гра­фического интегрирования:

= SMx My

где S-площадь, ограниченная кривой, yw и yp , и осью абсцисс.

noy Н = = 4,6 noy В = = 5,4 noy = = 10

Общую высоту единиц переноса hoy находим по уравнению аддитивности:

hoy = hy + hx

где hx и hy –частные производные единиц переноса соответственно в жидкой и паровой фазах; m – средний коэффициент распределения в условиях равновесия для соответствующей части колонны.

Отношение нагрузок по пару и жидкости G/L равно:

Для верхней части колонны

G/L =(R+1)/R = 5,086/4,086 = 1,245

Для нижней части колонны

G/L =(R+1)/(R+f) = 5,086/16,176 = 0,314

Здесь f = FMЭ /PMF = 5,944*46,07/1,023*22,15 = 12,09

Высота единицы переноса в жидкой фазе равна:

hx = 0,258 Ф с Pr Z

где с и Ф – коэффициенты определяемые по графику; Prx = – критерий Прандля для жидкости; Z – высота слоя насадки одной секции, которая из условия прочности опорной решётки и нижних слоёв насадки не должна превышать 3 м.

Высота единицы переноса в паровой фазе равна:

hy =

где - коэффициент определяемый по графику; Ls = L / 0.785d2 –массовая плотность орошения, кг/(м2 с); d – диаметр колонны;

в мПа х с)

Для расчёта hx и hy необходимо определить вязкость и коэффициенты диффузии в жидкой Dx и паровой Dy фазах. Вязкость паров для верхней части колонны:

где и - вязкости паров воды и этанола при средней температуре верхней части колонны; yВ =(yP + yF )/2 – средняя концентрация паров. Подставив получим:

yВ =(0,86 + 0,33)/2 = 0,595


= 0,368 мПа с

Аналогичным расчётом для нижней части колонны находим

=0,24 мПа с

Вязкости паров для верхней и для нижней частей колонны близки, поэтому можно принять среднюю вязкость паров в колонне = 0,304 мПа с

Коэффициент диффузии в жидкости при средней температуре t равен:

Dx = Dx 20 (1+b(t-20))

Коэффициенты диффузии в жидкости Dx 20 при 20о С можно вычислить по приближённой формуле:

Dx 20 =

Тогда коэффициенты диффузии в жидкости для верхней части колонны при 20о С

Dx В20 = = 9,3*10-9 м2

Температурный коэффициент

b = = 0,2 = 0,017

Отсюда

Dx В = 9,3*10-9 (1+0,017(88-20)) = 20,05*10-9 м2

Аналогично находим для нижней части колонны

Dx Н = 9,3*10-9 (1+0,017(97-20)) = 21,47 м2

Коэффициент диффузии в паровой фазе

Dy =

Где Т- средняя температура в соответствующей части колонны; Р- абсолютное давление в колонне.

Тогда

Dy В = = 9,86*10-7 м2

DyH = 10,1*10-7 м2

Таким образом, для верхней части колонны:

hx В = 0,258 * 0,068 * 0,92(0,396*10-3 /852*20,05*10-9 )0,5 30,15 = 0,09 м

hy В = = 2,26 м

Для нижней части колонны

hx = 0,09 м

hy = 2,01

Общая высота единицы переноса

h0 yB = hy + hx = 2,26 + 0,09 = 2,7 м

h0 yH = hy + hx = 2,01 + 0,09 = 2,12 м

Высота насадки:

НВ = 5,4*2,7 = 14,6

НН = 4,6*2,12 = 9,8

Общая высота насадки:

Н = 14,6+9,8 = 24,4 м

С учётом того, что высота слоя насадки в одной секции Z равна 3м, общее число секций в колонне составляет 13 ( 8 секций в верхней части и 5 - в нижней).

Общую высоту ректификационной колонны определим по уравнению

HK = Zn +(n-1) hP + ZB + ZH = 3*13+12*0,5+1,4+2,5 = 48,9 м

IV . Расчёт гидравлического сопротивления насадки

Гидравлическое сопротивление насадки

Гидравлическое сопротивление сухой неорошаемой насадки

где l - коэффициент сопротивления сухой насадки, зависящий от режима движения газа в насадке.

Критерий Рейнольдса для газа в верхней и нижней частях колонны

ReyB = 5310

ReyH = 10080

Следовательно, режим движения турбулентный.

Для турбулентного режима коэффициент сопротивления сухой насадки в виде беспорядочно засыпанных колец Рашинга

l = 16/Rey 0.2

lB = 16/53100.2 = 2,88

lH = 16/100800.2 = 2,53

Находим гидравлическое сопротивление сухой насадки

= = 1509 Па

= = 483 Па

Плотность орошения

UB = = 0,00039 м3 /(м2 с)

UН = = 0,00091 м3 /(м2 с)

Гидравлическое сопротивление орошаемой насадки:

В = 10169*0,00039 1509 = 1756,3 Па

В = 10169*0,00091 483 = 668,3 Па

DР = DРВ + DРН = 1756,3+668,3 = 2424,6 Па

Гидравлическое сопротивление насадки составляет основную долю общего сопротивления ректификационной колонны. Общее же сопротивление колонны складывается из сопротивлений орошаемой насадки, опорных решёток, соединительных паропроводов от кипятильника к колонне и от колонны к дефлегматору. Общее гидравлическое сопротивление ректификационной колонны обусловливает давление и, следовательно, температуру кипения жидкости в испарителе. При ректификации под вакуумом гидравлическое сопротивление может существенно отразиться также на относительной летучести компонентов смеси, т. е. изменить положение линии равновесия.